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Frame retrofit using friction dampers 
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ABSTRACT 

A simple quasi-static analysis procedure is developed for the seismic retrofit of frames using friction dampers. The procedure 
uses a previously published closed-form solution to establish the relationship between the response of the retrofitted frame 
and the damper parameters. It accounts for the effect of frame bending deflection, which may significantly influence the 
response estimate, by introducing a localized model to characterize a refined tri-linear force-displacement relation for the 
retrofitted friction damped system. The adequacy of the procedure is verified by comparing the response obtained by the 
proposed method with that determined from a series of dynamic analyses for a retrofitted example frame. 

INTRODUCTION 

The authors have recently established the closed form solution for the normalized seismic response of a friction damped 
system (FDS) in terms of the system parameters (Fu and Cherry 1998, 1999). This solution is based on a tri-linear structural 
model, to reflect the potential for damper slipping and frame member yielding. The solution was logically obtained by 
combining available, credible rules to permit both the equivalent linearization of the non-linear system (Iwan and Gates 
1979), and the spectral response change resulting from the period shift and damping increase due to the added dissipaters 
(Hanson and Jeong 1994). Based on an analogy between conventional and FDSs, the force modification factor (R-factor) to 
be used in the design of friction damped frames (FDFs) was then defined by using the closed form solution. This approach 
results in a code compatible lateral force procedure for designing new FDFs. 

The objective of the present paper is to develop a quasi-static retrofit analysis procedure for FDFs. Since both structural 
and non-structural frame damage is controlled by the frame deformation, the primary retrofit target is set to meet a specified 
displacement demand. The response of the FDF is determined by using the above mentioned closed form solution together 
with a static analysis that is based on the structural properties of the original frame. The desirable performance of the 
retrofitted frame can be achieved by optimizing the damper parameters in a predictable manner. In order to obtain a reliable 
response estimate, a localized tri-linear model is introduced to develop equations that account for the effect of frame 
bending deflection, which may be significant in frames that are retrofitted with friction dampers. The validity of the 
developed procedure is verified by comparing the response results obtained by this procedure with the corresponding results 
derived from a series of dynamic analyses of a retrofitted example frame. 

CLOSED FORM SOLUTION FOR SINGLE DEGREE FREEDOM FDS 

Fig. 1(a) illustrates the schematic model of a single degree freedom (SDOF) FDS, which consists of: a mass M, a viscous 
damper with coefficient Co  representing the inherent damping of the system, system gravity supporting members 
characterized by their lateral member stiffness K1 and yielding strength Py, and a friction damper unit characterized by its 
bracing stiffness Ka  and slip force Pa. The governing equation of motion of the system when excited by a ground 
acceleration ag(t) is: 

ii(t) + 240e.)U(t) + f(t) = —a (t) (1) 

where u(t) is the displacement of the mass relative to ground, ()=Co/(21.1.)M) is the inherent critical damping ratio of the 
system, w=((Ki+Ka)/M)112  is the system initial cyclic frequency, and f(t) is the system restoring force resulting from the 
resisting forces provided by the frame supporting members and the damper unit. The FDSs discussed in this paper exhibit 
the tri-linear f(t)-u(t) relation shown in Fig. 1(b). In Fig. 1(b), u, and uy  denote the system displacement when the damper 
slips and the supporting members yield, respectively. fy  = l's+Py  denotes the ultimate strength of the system, whereas f5  = 
Ps+Kfus  defines the force level above which the damper is triggered to dissipate energy. 

The model shown in Fig. 1(a) is composed of an original system, having a mass, viscous damper and supporting members, 

Visiting Researcher, 2  Professor Emeritus, Department of Civil Engineering, University of British Column, 2324 Main 
Mall, Vancouver, BC V6T 1Z4, Canada, cherry @civil.ubc.ca. 

385 



and a friction damper unit. For a given earthquake, the response of the original linear system (P, large enough to avoid 
member yielding) only depends on Kf and Co  of the original system. A change in supporting member strength P, and the 
addition of a friction damper unit with various parameters (Ka  and P5) will alter the system response. By employing a 
`resolution-synthesis' approach (Fu and Cherry 1998, 1999), the maximum seismic response of the tri-linear FDSs can be 
evaluated as the product of the response of the linear original system and a normalized response function which accounts for 
the response change due to the attached damper and the yielding of the supporting members. The response evaluation 
equations are presented here as Eq. 2; the detailed deduction of these parameters is given by Fu and Cherry (1999). 

umax = RsdUmax.o f max = Rffmax,o (2) 

where Lima), and fna),  are the maximum displacement and force, respectively, of the friction damped system. u,o  and f,„ 
are the maximum displacement and force, respectively, of the original elastic system, and Rsd  and Rf are the normalized 
displacement and normalized force functions, respectively. The Rsd  and Rf functions are calculated from: 

3 
Rsd =./[(1 — e-B4`) J/ [(1—  C134°  )4e ]Keo Rf = Rsd (a a I + 1  / ) (3) 

where B=30 is a constant that reflects the effectiveness of damping on response reduction (Hanson and Jeong1994). The 
equivalent damping ratio 4, and the intermediate parameters Ed. and K., are defined as: 

4e =4. + Edo / (Taco) , Keo = a a 1.1 s  +1This  +(lnp. y  +1)/ , Edo  = a a (µ, —1)2  /11,3  ± (1.1 y  —1)2  /IA (4) 

In the above equations, aa  is the damper bracing stiffness ratio, µs  is the damper slip ratio and !Ay  is the system ductility ratio. 
These parameters are defined as follows: 

a a  = Ka  / Kf = U MaX / US >1' µy =umaz/ U y >_ l (5)  

aa, µs  and IA, are the basic system parameters. They determine the normalized response functions and therefore influence 
the maximum system response. 

INFLUENCE OF FRAME BENDING DEFLECTION 

The total lateral seismic deflection of a frame can be separated into its shear and bending deflections. The frame shear 
deflection is determined by the flexural properties of the frame members, whereas the frame bending deflection depends 
mainly on the axial deformations of its columns. These two types of deflection are independent. When a supplemental 
damper is added to the frame, it only changes the shear resistance capacity of the frame. The localized tri-linear model 
shown in Fig. 2 can be used to account for the effect of frame bending deflection in a FDS. In Fig. 2, the deformation u(t) 
of the mass M is the summation of the deformations of the frame shear and bending components. The frame bending 
component has a stiffness Kfb, whereas the frame shear component has a stiffness Kf, and a yield strength P,. In the 
localized tri-linear model, the added damper unit, whose stiffness and slip force are Ka  and P„ respectively, acts in parallel 
with the frame shear component. This localized model was successfully used by Kasai et al. (1998) to analyze a non-
yielding, bi-linear hysteretic system. The relation between system force and system displacement (f(t)-u(t)) of the localized 
model remains tri-linear. Hence, the equations for system response evaluation (Eqs. 2 to 5) remain valid and can be 
evaluated once the expressions for the basic system parameters (Eq. 5) can be established. 

For the system shear component, the three local basic parameters corresponding to Eq. 5 can be defined as: 

a'a  = Ka  I K 15  , = U;„a, / U; 1 , = U / U 'y 1 (6) 

where u'roax, u', and u',, are the maximum, the slip and the yield displacements, respectively, of the shear component. It is 
noted that the stiffness of the localized original system (system without the damper unit) is the same as the tangent stiffness 
of the localized system when the damper slips but the frame does not yield. Thus, the total system member stiffness and the 
damper bracing stiffness ratio, which can be obtained from their basic definitions (see Fig. 1(b)), are: 

Kf = Kf;  / (1 + Kfi  / Kfb ) , a a  = a'a  /[1+(l+a'a )(KA  / Ktb)] (7) 

Applying the conditions of force equilibrium and displacement compatibility to the localized system when the damper slips 
and the frame yields, the system slip and ductility ratios can be expressed in terms of the local parameters as: 

 

IA; +(.4 /1.1.1y, +a'a )Kfs  / K fb  Ify 

Uy = 1+ 

1+(l+a'a lfy  / U;)Kf, / Kfb 

(8) = 1+(l+a'a )Kfs  / Kfb  

The basic local parameters defined in Eq. 6 are physically more meaningful than the global system parameters expressed in 
Eq. 5, since the former can be assigned values for design while the latter are only intermediate variables used in the closed- 
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form response estimates. From Eq. 7, it can be seen that the introduction of frame bending stiffness (1Cfs/Kfb#0) leads to a 
global as  that is less than the local a'a; Eq. 3 illustrates that this results in a reduction of the damper effectiveness (Fu and 
Cherry 1999). Eq. 8 indicates that the global system slip and ductility ratios are greater than their local counterparts. 

In the above equations, the ratio of Kfs/Kfl, is a measure of the significance of the frame bending effect. If IQ, is much larger 
than Kfs, the frame bending effect can be neglected. However, it is difficult to estimate directly the Kfs/Kfb  ratio for a frame. 
It may be more convenient to calculate this ratio in terms of the ratio of the period Tf  of the original system (Ka  = 0), to the 
period Tf, of the original shear system (Ka  = 0, Kfb  = CO). Thus: 

K / K fb  = (rf  / ) 2  — 1 (9) 

REPRESENTATIVE RESPONSE OF MULTI DEGREE OF FREEDOM FDF 

When an earthquake excited multi degree of freedom (MDOF) FDF deforms in one predominant mode {4)}, it is possible to 
condense the governing equations of motion of the MDOF system to a SDOF equation by introducing the coordinate 
transformation {u(t)}={ 4)1q(t). In this transformation, {u(t)} is the floor displacement vector of the MDOF system relative to its 
moving base and q(t) is a generalized coordinate. Under this condition, the condensed equation can be expressed as: 

f T  q(t)+ 24.o)q(t)+ T
e(t)

= yeag(t) , c {0 = T
[M]ill

fc(t)=101-{f(t)} 
IC [WIC {44 [MHO 

where 40  and w are the inherent damping ratio and the initial frequency, respectively, of the frame, [M] is the frame mass 
matrix, {f(t)} is the system restoring force vector resulting from the resisting forces provided by the frame members and damper 
units, and y, is the modal participation factor. It may be seen that the relation between the condensed force fc(t) and the 
generalized displacement q(t) of a MDOF FDF (Eq. 10) is the same as the relation between f(t) and u(t) for the SDOF FDSs 
described by Eq. 1. Thus, all concepts and equations developed previously (Eqs. 2 to 9) for SDOF FDSs can be applied, by 
analogy, to the condensed MDOF FDF. 

As illustrated by Fu and Cherry (1998, 1999), it is possible to constrain a FDF to develop a linear mode shape, {4}; this ensures 
an equal drift ratio for all storeys of the frame. For simplicity, this deformed shape { 4) } can be set equal to { h }, the storey height 
vector measured from the frame base to each storey floor level. Then the q(t) and fc(t) in Eq. 10 physically represent the angle 
of the deformed shape and the base overturning moment, respectively, of the FDF. i.e.: 

{u(t)} = {h}q(t) , fc (t)={1}T{f(t)} (11) 

In summary, the seismic response of a MDOF FDF can be approximately represented by the deformed angle (DA) and base 
overturning moment (OTM) of the frame. These response parameters for the damped frame can be determined from the 
corresponding response parameters of the original undamped frame by means of the normalized functions shown in Eq. 2, in 
which umax  is replaced by DA and fmax  by OTM. The normalized functions are evaluated from the basic local parameters (a'a, 
p.'„ II., and Kfs/Kfl,) through Eqs. 8, 7, 4 and 3. For the original undamped frame, the OTM can be directly established from the 
given lateral forces which result in the maximum displacement shape {u(t)}. The DA can then be evaluated by approximating 
the actual deformed shape by a straight line using the least-square-fit equation, which yields: 

DA =Ihnu(t)}/{h}T{h} (12) 

PARAMETERS FOR RETROFIT ANALYSIS 

There are four parameters (a'a, p'y  and Kfs/Kfl,) that influence the response of the retrofitted frame. The Kfs/Kft, ratio is a 
property of the original frame; it can be calculated from Eq. 9. pey, which is defined as the ratio of u'max  to u'y  (Eq. 6), is not 
an independent design parameter, since the yield displacement of the shear component u'y  is a property of the original frame. 
From its definition, n'y  can be iteratively evaluated from the following expression: 

=u ma), /u„[1+ Kfs  / Kth  (1 — a a  /1..ts  —1/ pl y )] 1 (13) 

where u, is the yield displacement (in terms of the DA) of the original frame, which can be obtained from a static push over 
analysis. Thus, the only two remaining parameters, a'a  and pi's, can be independently assigned values to achieve the desired 
retrofit results. 

(10) 
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Parameter a'a  is used to specify the damper bracing stiffness, and parameter µ s  is used to specify the shear displacement at 
which the friction damper slips. In practice, it is more convenient to specify the damper slip force Ps  rather than 1..es. In 
order to do so, Fu and Cherry (1999) have derived the following set of equations to establish the relationship between the 
global system parameters and the physical parameters of the frame and damper units: 

fm 1 11
E(i Ka''

EK a  j-1, 2  
(14) ax  = 1  +  s 1) , f

max N
T T}  , 

=  
fs 1+ a a y Kf,i a  

where fmax  is the maximum system condensed force (see Eq. 2), {F} is the lateral force vector that describes the maximum 
frame forces developed in the retrofitted structure, and Psi, Kai, Kfj, and Hi  respectively denote the damper slip force, 
damper bracing stiffness, storey shear stiffness, and storey height at the i-th storey level of the frame. By imposing 
conditions that ensure the frame develops a linear deformed shape under the lateral force pattern (i) before any friction damper 
slippage occurs and (ii) when the system force reaches its maximum magnitude, the damper parameters at each storey level can 
be determined from (Fu and Cherry 1999): 

Vi H i  E(KfiHi 2 ) E[(1+ / Ka,i )Vi — fs  
Kai  = Kfi (1+ aa )-1 , =V, Kf (15) 

Kf.,f1,2 E(V,H,) E[(1 + Kf
,
i / K a, )1(f

.
,14, 2 ] 

where V;  is the maximum storey shear force at the i-th storey level of the frame, which is calculated from {F}. 

FRAME RETROFIT EXAMPLE 

A single bay 6-storey steel moment resisting frame (MRF) was designed in accordance with the National Building Code of 
Canada (NBCC 1995) for an office building location in downtown Vancouver. Details of the frame parameters and 
properties are provided in Table 1. The design of the MRF was governed by the code storey drift limitation of 0.02 for an 
elastic base shear force of 3922kN. In this paper, the MRF is used as an original frame to illustrate the proposed retrofit 
procedure using friction dampers. The target of the retrofit is to limit the storey drift ratio to less than 0.01. and to 
minimize the resulting increase in the system force. 

Based on the assumption of a single predominant mode response, and applying the format of the NBCC (1995) equations to 
establish an equivalent pseudo acceleration spectrum, the elastic base shear force, Veo, for the original elastic frame can be 
determined from the condensed equation (Eq. 10) as: 

({1}T[m]{40.)2,
6

U 15vIF 0.36 
Veo = LMSpaW, = , Spa  = (16) 

({0
T
[MHSI)W R 

where LM  is the effective modal mass factor, which in practice can be assigned a value of unity to retain conservatism, g is 
the gravitational acceleration, W is the total weight, Spa  is the representative of the pseudo acceleration spectrum for 5% 
critical damping ratio, which is deduced from the NBCC (1995) seismic base shear force equation, U=0.6 is a calibration 
factor, R=1 is the force modification factor, v=0.4 (0.2 for original design) is the zonal velocity ratio, I=1 is the importance 
factor, and F=1 is the foundation factor. 

For the original MRF, whose period (TO is 2.08 second, Eq. 16 yields Spa=0.25g, LM  =0.78, and Veo  =39301(N. The 
representative response (DA and OTM) of the original elastic frame can be obtained from the static displacement { ueo  } and 
the lateral force {Foo} corresponding to this base shear force. Thus, from Eqs. 12 and 11, the deformed angle DA0= 0.0172 
and the base overturning moment OTM0=62227 kN-m. DAo, by definition, is a measure of average storey drift of the 
original frame; it significantly exceeds the specified requirement under the given seismic load. From Eq. 9, Kis/Kth=0.16, 
based on the shear period Tfs=1 .93 seconds, which corresponds to the original frame whose column axial deformations are 
restricted. The yield displacement of the original frame, uyo  (in terms of DAy0=0.0075) is obtained from the static pushover 
curve of the original frame. Once these parameters are established, the representative response of the FDF can be expressed 
in terms of a'a  and p.'s, as shown in Fig. 3. 

In Fig. 3, the solid thick lines denote the response for the inelastic frame, while the dashed lines denote the response for the 
elastic frame. The intersection of these lines defines the onset of yielding in the retrofitted frame; a frame will only yield if 
its response is located to the right of the indicated yield line. It can be seen that an increase in bracing stiffness (large a'a) 

leads to a reduction in the displacement, while an increase in the damper slippage (large p's) can effectively reduce the 
system force. However, stiff braces imply correspondingly large member cross section areas, while extensive slippage can 
result in excessive displacements. Given the practical limitations imposed by the economic considerations of bracing 
member size, and by the requirement of satisfying a specified deformed angle, a value of a'a  =4 is selected as a reasonable 
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effective retrofit parameter. Similarly, la', =5 is selected to limit the increase in system force, in order to avoid frame 
yielding. 

For these selected values of a'a  and the corresponding estimates for the response of the FDF are DA=0.0072 and 
OTM=42118 IN-m. Since the DA is a measure of the average storey drift, this DA value will likely assure the satisfaction 
of the specified drift requirement. The OTM, which is the maximum system force fnax  appearing in Eq. 14, is used to 
calculate the required system slip force (fs) and to determine the frame storey maximum shear forces (V1) from the same 
lateral force distribution pattern that was utilized for the original frame ({Feo}). Then the required bracing stiffness (Ks.,) 
and slip force (Psi) for the friction dampers are determined by using Eq. 15. Chevron braces, whose cross sections are sized 
according to Ks,;, were employed to accommodate the friction damping mechanism in this retrofit design example. The 
desired physical parameters of friction damper units are listed in Table 1. 

COMPARISON BETWEEN STATIC ESTIMATE AND DYNAMIC RESPONSE 

Following the dynamic procedure proposed by FEMA-273 (1997), the acceleration-time histories of ten recorded 
earthquakes were adjusted in the manner described by Naumoski's (1985), to ensure that their resulting 5% damped pseudo 
acceleration spectra matched the NBCC (1995) design spectrum described by Eq. 16. The ten selected earthquakes were El 
Centro (1940 NS), Taft (1952 EW), Hachinohe (1968 EW), Parkfield (1966 CSA2 N65E), Mexico (1985 SCT EW), Sylmar 
(1994 Northridge CHPL NS), Pacoima (1971 San Fernando N164E), Newhall (1994 Northridge LA CFS NS), Olympia (1965 
N266E), and Loma Prieta (1989 Gilroy 2SHCB NS). These spectrum-compatible time-histories were subsequently used in the 
dynamic analyses of the original and retrofitted frames. 

The envelopes of maximum storey drift developed in the retrofitted and original frames by the ten individual earthquakes are 
shown in Fig. 4, together with an estimate of the response obtained using the quasi-static procedure proposed in this paper. It 
can be seen that, except for two individual cases, the storey drifts of the retrofitted frame are controlled within the specified 0.01 
limit. As well, in comparison with the original frame, the retrofitted frame exhibits an improved drift distribution. The thick 
dashed line labeled "static estimate: original MRF" is determined from the static response fueo l of the original elastic frame 
under the code lateral forces {FeO} (see Eq. 16). The thick solid line labeled "retrofitted frame: static estimate" is derived by 
scaling the static estimate of the original MRF by the normalized function Rsd, corresponding to the selected system parameters 
(Eq. 3). The static estimate of the retrofitted frame appears to represent the average of the dynamic responses. The dynamic 
analysis results indicate that no major yielding occurred in the retrofitted frame members. 

CONCLUSIONS 

1. A simple quasi-static analysis procedure has been developed for the seismic retrofit of frames using friction dampers. The 
procedure employs the authors' previously developed closed-form solution for the seismic response of tri-linear hysteretic 
systems. This solution statically predicts the response of a retrofitted frame in terms of the original frame response and the 
damper parameters. The approach provides a clear description of the effectiveness of the friction dampers in improving system 
performance and in illustrating the relation between the system response and the damper parameters of the retrofitted frame. It 
is therefore more informative and efficient than dynamic analysis procedures. 

2. The above mentioned closed form solution is extended to account for the effect of frame bending deflection on the system 
response. The extension introduces a localized model to characterize a refined tri-linear force-displacement relation of the 
friction damped retrofitted system. It is concluded that if the frame shear stiffness is larger than about 5% of the frame bending 
stiffness, the frame bending stiffness cannot be neglected when estimating the response of the retrofitted frame. Small frame 
bending stiffness results in a decrease in the global damper bracing stiffness ratio, which leads to a decrease in the effectiveness 
of friction dampers in reducing seismic response. The influence of this effect is more pronounced when stiff damper braces are 
employed. 
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Table. 1 Example frame parameters and properties 

Storey 
level 

Mass 
(ton) 

Original frame Damper units 
Beam section 

(W) 

Column 
section (W) 

Shear stiffness 
Kfs., (kN-m) 

Brace 
section (HSS) 

Slip force 
Ps., (1(N) 

Stiffness 
ratio a,, 

6 320 610x140 360x314 32474 152x152x6.4 189 3.3 
5 346 610x140 360x314 41382 152x152x11 587 4.3 
4 346 610x262 360x382 54447 203x203x9.5 801 3.9 
3 346 610x262 360x382 55471 203x203x13 1115 5.0 
2 346 610x262 360x421 60615 203x203x13 1247 4.5 
1 346 610x262 360x421 91435 203x203x13 1247 3.0 

Note: (1) Geometry: frame span 5m, storey height 3.6m. Chevron brace for damper units. (2) Storey gravity loads: 
total 3291(N except 2851(N at top; beam 45kN except 39kN at top. (3) Material: W - wide flange steel, HSS - hollow 
section steel. Strength 300MPa. (4) Period of the original frame: Tf=2.08sec.; (shear) Tfs=1.93sec. (5) Elastic base 
shear for the original MRF design: 39221(N. (6) Response of the original frame at initiation of yielding: DA,0=0.0074. 
OTM,0=27062 (7) Frame shear stiffness and damper slip force are measured in the horizontal direction. 
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Figure 1. SDOF model for FDS  Figure 2. Localized tri-linear model 
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